Pseudo Code:
1) Get RGB as an array
2) Convert RGB to grey-scale using W3C luminance
3) Normalize data
4) Perform an accurate 2D correlation

Relative Luminance
Relative Luminance is the relative brightness of any point in a colorspace where 0=black and 1=white
\[E'Y = 0.299E'R + 0.587E'G + 0.114E'B \]

Normalization
data - data.mean() / data.std()

2D correlation
The 2D Correlation performs 2D correlation on two input matrices. Both linear and circular correlation can be computed. Two computation methods are available: a fast algorithm based on FFT and an accurate method based on shift accumulation. With a normalized result, it is easier to tell the degree to which the two input signals are correlated.
For speeding up:
Prescreen with 90 % resizing
Main screen with 75 % resizing
100% + 97% for same images but with different expose

76% for similar looking images, they are not recognized as false positive (unlike FFT)

100% + 95% for shifted images, they are not recognized as false negative (unlike FFT, Pearson, histogram comparison et al.)